Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 32(7): e2647, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35535608

RESUMEN

To mitigate human-wildlife conflict it is imperative to know where and when conflict occurs. However, standard methods used to predict the occurrence of human-wildlife conflict often fail to recognize how a species distribution likely limits where and when conflict may happen. As such, methods that predict human-wildlife conflict could be improved if they could identify where conflict will occur relative to species' underlying distribution. To this end, we used an integrated species distribution model that combined presence-only wildlife complaints with data from a systematic camera trapping survey throughout Chicago, Illinois. This model draws upon both data sources to estimate a latent distribution of species; in addition, the model can estimate where conflict is most likely to occur within that distribution. We modeled the occupancy and conflict potential of coyote (Canis latrans), Virginia opossum (Didelphis virginiana), and raccoon (Procyon lotor) as a function of urban intensity, per capita income, and home vacancy rates throughout Chicago. Overall, the distribution of each species constrained the spatiotemporal patterns of conflict throughout the city of Chicago. Within each species distribution, we found that human-wildlife conflict was most likely to occur where humans and wildlife habitat overlap (e.g., featuring higher-than-average canopy cover and housing density). Furthermore, human-wildlife conflict was most likely to occur in high-income neighborhoods for Virginia opossum and raccoon, despite the fact that those two species have higher occupancy in low-income neighborhoods. As such, knowing where species are distributed can inform guidelines on where wildlife management should be focused, especially if it overlaps with human habitats. Finally, because this integrated model can incorporate data that have already been collected by wildlife managers or city officials, this approach could be used to develop stronger collaborations with wildlife management agencies and conduct applied research that will inform landscape-scale wildlife management.


Asunto(s)
Animales Salvajes , Mapaches , Animales , Ciudades , Ecosistema , Humanos , Zarigüeyas
2.
Sci Signal ; 12(568)2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755477

RESUMEN

DNA-alkylating agents are commonly used to kill cancer cells, but the base excision repair (BER) pathway they trigger can also produce toxic intermediates that cause tissue damage, such as retinal degeneration (RD). Apoptosis, a process of programmed cell death, is assumed to be the main mechanism of this alkylation-induced photoreceptor (PR) cell death in RD. Here, we studied the involvement of necroptosis (another programmed cell death process) and inflammation in alkylation-induced RD. Male mice exposed to a methylating agent exhibited a reduced number of PR cell rows, active gliosis, and cytokine induction and macrophage infiltration in the retina. Dying PRs exhibited a necrotic morphology, increased 8-hydroxyguanosine abundance (an oxidative damage marker), and overexpression of the necroptosis-associated genes Rip1 and Rip3 The activity of PARP1, which mediates BER, cell death, and inflammation, was increased in PR cells and associated with the release of proinflammatory chemokine HMGB1 from PR nuclei. Mice lacking the anti-inflammatory cytokine IL-10 exhibited more severe RD, whereas deficiency of RIP3 (also known as RIPK3) conferred partial protection. Female mice were partially protected from alkylation-induced RD, showing reduced necroptosis and inflammation compared to males. PRs in mice lacking the BER-initiating DNA glycosylase AAG did not exhibit alkylation-induced necroptosis or inflammation. Our findings show that AAG-initiated BER at alkylated DNA bases induces sex-dependent RD primarily by triggering necroptosis and activating an inflammatory response that amplifies the original damage and, furthermore, reveal new potential targets to prevent this side effect of chemotherapy.


Asunto(s)
ADN Glicosilasas/metabolismo , Reparación del ADN , Inflamación/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Degeneración Retiniana/metabolismo , Animales , Antineoplásicos Alquilantes/efectos adversos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , ADN Glicosilasas/genética , Femenino , Inflamación/genética , Inflamación/patología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/genética
3.
Oncotarget ; 8(40): 68707-68720, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28978150

RESUMEN

Alkylating agents are commonly used to treat cancer. Although base excision repair (BER) is a major pathway for repairing DNA alkylation damage, under certain conditions, the initiation of BER produces toxic repair intermediates that damage healthy tissues. The initiation of BER by the alkyladenine DNA glycosylase (AAG, a.k.a. MPG) can mediate alkylation-induced cytotoxicity in specific cells in the retina and cerebellum of male mice. Cytotoxicity in both wild-type and Aag-transgenic (AagTg) mice is abrogated in the absence of Poly(ADP-ribose) polymerase-1 (PARP1). Here, we tested whether PARP inhibitors can also prevent alkylation-induced retinal and cerebellar degeneration in male and female WT and AagTg mice. Importantly, we found that WT mice display sex-dependent alkylation-induced retinal damage (but not cerebellar damage), with WT males being more sensitive than females. Accordingly, estradiol treatment protects males against alkylation-induced retinal degeneration. In AagTg male and female mice, the alkylation-induced tissue damage in both the retina and cerebellum is exacerbated and the sex difference in the retina is abolished. PARP inhibitors, much like Parp1 gene deletion, protect against alkylation-induced AAG-dependent neuronal degeneration in WT and AagTg mice, regardless of the gender, but their efficacy in preventing alkylation-induced neuronal degeneration depends on PARP inhibitor characteristics and doses. The recent surge in the use of PARP inhibitors in combination with cancer chemotherapeutic alkylating agents might represent a powerful tool for obtaining increased therapeutic efficacy while avoiding the collateral effects of alkylating agents in healthy tissues.

4.
Oncotarget ; 7(29): 44950-44965, 2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-27391435

RESUMEN

Nephrotoxicity is a common toxic side-effect of chemotherapeutic alkylating agents. Although the base excision repair (BER) pathway is essential in repairing DNA alkylation damage, under certain conditions the initiation of BER produces toxic repair intermediates that damage healthy tissues. We have shown that the alkyladenine DNA glycosylase, Aag (a.k.a. Mpg), an enzyme that initiates BER, mediates alkylation-induced whole-animal lethality and cytotoxicity in the pancreas, spleen, retina, and cerebellum, but not in the kidney. Cytotoxicity in both wild-type and Aag-transgenic mice (AagTg) was abrogated in the absence of Poly(ADP-ribose) polymerase-1 (Parp1). Here we report that Parp1-deficient mice expressing increased Aag (AagTg/Parp1-/-) develop sex-dependent kidney failure upon exposure to the alkylating agent, methyl methanesulfonate (MMS), and suffer increased whole-animal lethality compared to AagTg and wild-type mice. Macroscopic, histological, electron microscopic and immunohistochemical analyses revealed morphological kidney damage including dilated tubules, proteinaceous casts, vacuolation, collapse of the glomerular tuft, and deterioration of podocyte structure. Moreover, mice exhibited clinical signs of kidney disease indicating functional damage, including elevated blood nitrogen urea and creatinine, hypoproteinemia and proteinuria. Pharmacological Parp inhibition in AagTg mice also resulted in sensitivity to MMS-induced nephrotoxicity. These findings provide in vivo evidence that Parp1 modulates Aag-dependent MMS-induced nephrotoxicity in a sex-dependent manner and highlight the critical roles that Aag-initiated BER and Parp1 may play in determining the side-effects of chemotherapeutic alkylating agents.


Asunto(s)
Antineoplásicos Alquilantes/efectos adversos , ADN Glicosilasas/metabolismo , Riñón/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Alquilación , Animales , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Transgénicos , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...